A survey of kernel and spectral methods for clustering

نویسندگان

  • Maurizio Filippone
  • Francesco Camastra
  • Francesco Masulli
  • Stefano Rovetta
چکیده

Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and Neural Gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. Preprint submitted to Elsevier Science April 30, 2007

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Clustering in Kernel-induced Spaces Central Clustering in Kernel-induced Spaces Title: Central Clustering in Kernel-induced Spaces

Clustering is the problem of grouping objects on the basis of a similarity measure. Clustering algorithms are a class of useful tools to explore structures in data. Nowadays, the size of data collections is steadily increasing, due to high throughput measurement systems and mass production of information. This makes human intervention and analysis unmanageable without the aid of automatic and u...

متن کامل

Spectral methods for image clustering

The clustering problem is to assign labels to points in order to group them in a structurally meaningful way. This is often accomplished by defining cluster centroids in the vector space and assigning points to the cluster with the nearest centroid, as the k-means algorithm does. But this approach does not work for clusters that have unusual shapes, particularly if the clusters are interwoven o...

متن کامل

یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیک‌های یادگیری معیار فاصله

Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...

متن کامل

A Unified View of Kernel k-means, Spectral Clustering and Graph Cuts

Recently, a variety of clustering algorithms have been proposed to handle data that is not linearly separable. Spectral clustering and kernel k -means are two such methods that are seemingly quite different. In this paper, we show that a general weighted kernel k -means objective is mathematically equivalent to a weighted graph partitioning objective. Special cases of this graph partitioning ob...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2008